Six Decades of Seismology at South Pole, Antarctica: Current Limitations and Future Opportunities to Facilitate New Geophysical Observations

Author:

Anthony Robert E.1ORCID,Ringler Adam T.1ORCID,DuVernois Michael2ORCID,Anderson Kent R.3,Wilson David C.1ORCID

Affiliation:

1. U.S. Geological Survey, Albuquerque Seismological Laboratory, Albuquerque, New Mexico, U.S.A.

2. Department of Physics, Wisconsin IceCube Particle Astrophysics Center (WIPAC), University of Wisconsin–Madison, Madison, Wisconsin, U.S.A.

3. Incorporated Research Institutions for Seismology, Socorro, New Mexico, U.S.A.

Abstract

Abstract Seismograms from the South Pole have been important for seismological observations for over six decades by providing (until 2007) the only continuous seismic records from the interior of the Antarctic continent. The South Pole, Antarctica station has undergone many updates over the years, including conversion to a digital recording station as part of the Global Seismographic Network (GSN) in 1991 and being relocated to multiple deep (>250  m) boreholes 8 km away from the station in 2003 (and renamed to Quiet South Pole, Antarctica [QSPA]). Notably, QSPA is the second most used GSN station by the National Earthquake Information Center to pick phases used to rapidly detect and locate earthquakes globally, and has been used for a variety of glaciological and oceanography studies. In addition, it is the only seismic station on the Earth where low-frequency (<5  mHz), normal-mode oscillations of the planet excited by large earthquakes can be recorded without influence from Earth’s rotation, and most of the direct effects of the solid Earth tide vanish. However, the current sensors are largely 1980s vintage, and, while able to make some lower-frequency observations from earthquakes, the borehole sensors appear unable to resolve ambient ground motions at frequencies lower than 25 mHz due to instrument noise and contamination from magnetic field variations. Recently developed borehole sensors offer the potential to extend background noise observations to below 3 mHz, which would substantially improve the fidelity and scientific value of seismic observations at South Pole. Through collaboration with the IceCube Neutrino Observatory, the opportunity exists to emplace a modern very broadband seismometer near the base (>2  km depth) of the Antarctic ice cap, which could lead to unprecedented seismic observations at long periods and facilitate a broad spectrum of Earth science studies.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3