Rapid Earthquake Rupture Characterization for New Zealand Using the FinDer Algorithm

Author:

Andrews Jen1ORCID,Behr Yannik2ORCID,Böse Maren3ORCID,Massin Frédérick3ORCID,Kaiser Anna1ORCID,Fry Bill1ORCID

Affiliation:

1. 1GNS Science, Lower Hutt, New Zealand

2. 2GNS Science, Taupō, New Zealand

3. 3Swiss Seismological Service (SED), ETH Zürich, Switzerland

Abstract

ABSTRACTImmediately after a significant earthquake, rapid scientific information is critical for response decision-making and estimating secondary hazards, and is a key component of advisories and public communication. Characterization of the fault rupture extent is especially valuable because it strongly controls ground-motion estimates, or tsunami forecasts in offshore settings. The Finite-fault rupture Detector (FinDer) is designed to rapidly estimate location, extent, and orientation of earthquake fault rupture by matching spatial distributions of high-frequency seismic amplitudes with precomputed templates. Under a large public initiative to better prepare for and respond to natural disasters, FinDer is being implemented in New Zealand for rapid source characterization. Here, we report on implementation and performance, including offline and real-time testing using configurations modified for the New Zealand setting. Systematic testing is used to inform guidelines for real-time usage and interpretation. Analysis of rupture parameter recovery when using national network GeoNet stations demonstrates that for moderate (M 6+) onshore earthquakes FinDer can resolve magnitude and location well, and the rupture strike is also well determined for large (M 7+) onshore earthquakes. For near-offshore earthquakes (within 100 km), FinDer can provide reasonable magnitude estimates but cannot determine the location or strike. Real-time testing shows reliable detection for onshore earthquakes of M 4.5+, with reasonable location and magnitude accuracy. First detection times range between 7 and 65 s of earthquake origin, and stable solutions even for large (M 7+) magnitude events are delivered within 2 min. Although the GeoNet seismic network is not optimized for earthquake early warning, this provides a first exploration of network-based capability for New Zealand. Offline testing of significant M 7+ historic earthquakes demonstrates that FinDer’s rupture solutions can be used to improve rapid shaking predictions, and may be used to infer additional directivity and tsunami hazard even for complex events like the 2016 M 7.8 Kaikōura earthquake.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3