Seasonality of California Central Coast Microseisms

Author:

Shabtian Hannah S.12ORCID,Eilon Zachary C.1ORCID,Tanimoto Toshiro1ORCID

Affiliation:

1. 1Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California, U.S.A.

2. 2Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, U.S.A.

Abstract

ABSTRACTLinear scattering of ocean wave energy at the ocean–continent transition structure causes the primary microseism at a period of 14 s. Subsequent nonlinear wave–wave interactions produce the secondary microseism signal at half the primary microseism period (Longuet-Higgins, 1950; Haubrich et al., 1963). We use three years (2018–2022) of seismic data from an ongoing microarray deployment in the UC Santa Barbara Sedgwick Reserve, situated in the Santa Ynez Valley, to constrain seasonal and long-term microseismic noise characteristics for this portion of California’s central coast. Ancillary buoy data (spectral data, wave height, wind speed and direction) from the National Oceanic and Atmospheric Administration are used to explore the causal relationship between ocean swell and the generation of microseisms. This region is found to exhibit strong seasonality in the primary and secondary microseism bands (0.05–0.1 and 0.1–0.3 Hz, respectively), with much higher noise levels in the winter compared with the summer, especially for the secondary microseism (15.4 dB). We also observe a systematic shift in the peak frequency of the secondary microseism between the winter (∼0.14 Hz) and summer (∼0.20 Hz) months, which may reflect a difference in sources of secondary microseisms between the two seasons. Local buoy wave height and spectral data are well correlated with seismic power spectra during times of incoming storm swell in winter, indicating locally generated microseisms along the central coast during this season.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3