Explosive Yield Estimation Using Regional Seismic Moment Tensors

Author:

Ford Sean R.1ORCID,Pasyanos Michael E.1ORCID,Chiang Andrea1ORCID

Affiliation:

1. 1Lawrence Livermore National Laboratory, Livermore, California, U.S.A.

Abstract

ABSTRACT We use the Pasyanos and Chiang (2022) data set to calculate the seismic moment M0 for each explosion and use the measured explosive yield W to validate the W∼M0 relationship in Denny and Johnson (1991; hereafter, DJ91). The M0 is corrected by transforming to a potency tensor and applying more appropriate near-source geophysical parameter values in the moment estimate. The mean residual between observed and predicted yield is near zero; however, the standard deviation of the residuals results in an F-value (a 95% confidence factor) of about 5. We re-estimate the coefficients in the DJ91 model and find similar values and only a slight improvement in the F-value. Next, we embark on a similar model selection process as DJ91, allowing for non-cube-root yield scaling and other plausible near-source elastic moduli. As was found by DJ91, the yield dependence is not significantly different from unity, and a cube root assumption is valid. Therefore, we yield scale the seismic moment and test the significance of all plausible explanatory variables. Isotropic moment performs better in the response variable than total moment. The preference for isotropic moment could be due to its relationship to volume change, which would be more directly affected by explosive yield. Surprisingly, we find that the overburden pressure, which is a function of depth, is not a significant parameter in the model. We hypothesize that this is due to the competing depth effects on source asymmetry and the incorporation of depth in the Green’s functions used to calculate the seismic moment tensors. Importantly, this emphasizes that only seismic moment tensor-derived moments should be used in these models. After removing insignificant model parameters, we are left with a simple model to predict explosive yield W^ in kt from isotropic moment MI in N·m, W^=κ−1.4132 100.035626GPMI, in which κ and GP are the near-source bulk modulus and gas porosity in Pa and %, respectively. The F-value for this model is approximately 3.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Reference54 articles.

1. The containment of soviet underground nuclear explosions;Adushkin,2001

2. Geologic characterization and mechanics of underground nuclear explosions;Adushkin,1994

3. On quantification of the earthquake source;Ben-Zion;Seismol. Res. Lett.,2001

4. Appendix 2, Key formulas in earthquake seismology;Ben-Zion,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3