Earthquake Detectability and Depth Resolution with Dense Arrays in Long Beach, California: Further Evidence for Upper-Mantle Seismicity within a Continental Setting

Author:

Inbal Asaf1ORCID,Ampuero Jean-Paul2ORCID,Clayton Robert3ORCID

Affiliation:

1. 1Department of Geophysics, Tel Aviv University, Tel Aviv, Israel

2. 2Université Côte d’Azur, IRD, CNRS, Observatoire de la Côte d’Azur, Géoazur, Nice Cedex, France

3. 3Seismological Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

Abstract

Abstract The Newport–Inglewood fault (NIF) is a slowly deforming fault cutting through a thin continental crust with a normal geothermal; yet it hosts some of the deepest earthquakes in southern California. The nucleation of deep earthquakes in such a continental setting is not well understood. Moreover, the deep seismogenic zone implies that the maximum NIF earthquake magnitude may be larger than expected. Here, we quantify the resolution of the Long Beach (LB) and the Extended Long Beach (ELB) dense arrays used to study deep NIF seismicity. Previous study of the regional catalog and of downward-continued LB array data found NIF seismicity extending into the upper mantle beneath LB. Later studies, which analyzed the ELB raw data, found little evidence for such deep events. To resolve this inconsistency, we quantify the array’s microearthquake detectability and resolution power via analysis of pre- and postdownward migrated LB seismograms and benchmark tests. Downward migration focuses energy onto the source region and deamplifies the surface noise, thus significantly improving detectability and resolution. The detectability is also improved with the increase in the array aperture-to-source-depth ratio. The LB array maximum aperture is only 20% larger than the ELB aperture, yet its resolution for deep (>20 km) events is improved by about a factor of two, suggesting that small changes to the array geometry may yield significant improvement to the resolution power. Assuming a constant aperture, we find the LB array maintain resolution with 1% of its sensors used for backprojection. However, the high-sensor density is essential for improving the signal-to-noise ratio. Analysis of the regional and array-derived NIF catalogs together with newly acquired Moho depths beneath the NIF suggests that mantle seismicity beneath LB may be a long-lived feature of this fault.

Publisher

Seismological Society of America (SSA)

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3