Tectonic Deformation in the New Madrid Seismic Zone: Inferences from Boundary Element Modeling

Author:

Gomberg J. S.1

Affiliation:

1. U.S. Geological Survey, MS 966, Box 25046, Denver, CO 80225

Abstract

Abstract The lack of instrumental recordings and of obvious fault scarps associated with the 1811–1812 New Madrid earthquakes necessitates examination of more subtle indicators of the geometry and type of faulting responsible for these events. Morphologic and geologic features and the distribution of modern seismicity are used to infer the number, strike, length, width, type of faulting (strike- or dip-slip), and spatial variability of slip for the major faults in the New Madrid Seismic Zone (NMSZ). This is accomplished through two-dimensional boundary-element modeling of the strain field arising from slip on hypothetical faults that is driven by either coseismic or uniform regional strains. Tectonic deformation is reflected in the seismicity and in morphologic and geologic features including (1) the Lake County uplift, (2) Reelfoot Lake, (3) the deformed rocks of the Blytheville arch, and (4) the St. Francis Sunk Lands. Many of these features can be qualitatively explained as resulting from tectonic deformation due to slip on two left-stepping right-lateral strike-slip faults that are coincident with the northeast-trending zones of seismicity and the Blytheville arch. The morphology appears to be, at least in part, a consequence of major earthquakes that rupture these faults. The locations of the 1811–1812 and largest post-1812 earthquakes and the models are consistent with a process in which the 1811–1812 earthquakes relieved accumulated regional shear strain causing the greatest post-1812 shear strains to exist at the ends of the fault zone. Modeling results also suggest that the numerous small earthquakes in the NMSZ are not aftershocks of the 1811–1812 earthquakes but instead represent continuous localized adjustments to a uniform regional strain field. The Bootheel lineament does not appear to be significant in the shaping the morphology, geologic structure, and pattern of seismicity of the NMSZ. The inferred length of the 1811–1812 earthquake ruptures suggest that their sizes may have been overestimated. Model predicted subsidence within the St. Francis Sunk Lands suggests that tectonic deformation may also influence alluvial processes in the NMSZ.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3