Research Catalog of Inland Seismicity in the Southern Korean Peninsula from 2012 to 2021 Using Deep Learning Techniques

Author:

Han Jongwon1ORCID,Joo Seo Keun23,Kim Seongryong1ORCID,Sheen Dong-Hoon3ORCID,Lee Donghun4ORCID,Byun Ah-Hyun3

Affiliation:

1. 1Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea

2. 2Earthquake and Volcano Research Division, Korea Meteorological Administration, Seoul, Republic of Korea

3. 3Department of Geological Environment, Faculty of Earth System and Environmental Sciences, Chonnam National University, Gwangju, Republic of Korea

4. 4Department of Mathematics, Korea University, Seoul, Republic of Korea

Abstract

Abstract A seismicity catalog spanning 2012–2021 is proposed for the inland and near-coastal areas of the southern Korean Peninsula (SKP). Using deep learning (DL) techniques combined with conventional methods, we developed an integrated framework for compiling a comprehensive seismicity catalog. The proposed DL-based framework allowed us to process, within a week, a large volume of data (spanning 10 yr) collected from more than 300 seismic stations. To improve the framework’s performance, a DL picker (i.e., EQTransformer) was retrained using the local datasets from the SKP combined with globally obtained data. A total of 66,858 events were detected by phase association using a machine learning algorithm, and a DL-based event discrimination model classified 29,371 events as natural earthquakes. We estimate source information more precisely using newly updated parameters for locations (a 1D velocity model and station corrections related to the location process) and magnitudes (a local magnitude equation) based on data derived from the application of the DL picker. Compared with a previous catalog, the proposed catalog exhibited improved statistical completeness, detecting 21,475 additional earthquakes. With the newly detected and located earthquakes, we observed the relative low seismicity in the northern SKP, and the linear trends of earthquakes striking northeast–southwest (NE–SW) and northwest–southeast (NW–SE) with a near-right angle between them. In particular, the NE–SW trend corresponds to boundaries of major tectonic regions in the SKP that potentially indicates the development of fault structures along the boundaries. The two predominant trends slightly differ to the suggested optimal fault orientations, implying more complex processes of preexisting geological structures. This study demonstrates the effectiveness of the DL-based framework in analyzing large datasets and detecting many microearthquakes in seismically inactive regions, which will advance our understanding of seismotectonics and seismic hazards in stable continental regions.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3