BPMF: A Backprojection and Matched-Filtering Workflow for Automated Earthquake Detection and Location

Author:

Beaucé Eric1ORCID,Frank William B.2ORCID,Seydoux Léonard3ORCID,Poli Piero4,Groebner Nathan5ORCID,van der Hilst Robert D.2ORCID,Campillo Michel6ORCID

Affiliation:

1. 1Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, U.S.A.

2. 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

3. 3Institut de physique du globe de Paris, Université Paris cité, Paris, France

4. 4Dipartimento di Geoscienze, Università di Padova, Padova, Italy

5. 5Strabo Analytics, Inc, New Ulm, Minnesota, U.S.A.

6. 6Institut des Sciences de la Terre, Université Grenoble Alpes, Grenoble, France

Abstract

Abstract We introduce BPMF (backprojection and matched filtering)—a complete and fully automated workflow designed for earthquake detection and location, and distributed in a Python package. This workflow enables the creation of comprehensive earthquake catalogs with low magnitudes of completeness using no or little prior knowledge of the study region. BPMF uses the seismic wavefield backprojection method to construct an initial earthquake catalog that is then densified with matched filtering. BPMF integrates recent machine learning tools to complement physics-based techniques, and improve the detection and location of earthquakes. In particular, BPMF offers a flexible framework in which machine learning detectors and backprojection can be harmoniously combined, effectively transforming single-station detectors into multistation detectors. The modularity of BPMF grants users the ability to control the contribution of machine learning tools within the workflow. The computation-intensive tasks (backprojection and matched filtering) are executed with C and CUDA-C routines wrapped in Python code. This leveraging of low-level, fast programming languages and graphic processing unit acceleration enables BPMF to efficiently handle large datasets. Here, we first summarize the methodology and describe the application programming interface. We then illustrate BPMF’s capabilities to characterize microseismicity with a 10 yr long application in the Ridgecrest, California area. Finally, we discuss the workflow’s runtime scaling with numerical resources and its versatility across various tectonic environments and different problems.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Reference59 articles.

1. Maximum likelihood estimate of b in the formula log n= a-bm and its confidence limits;Aki;Bull. Earthq. Res. Inst. Tokyo Univ.,1965

2. A probabilistic synthesis of precursory phenomena;Aki,1981

3. Automatic phase pickers: Their present use and future prospects;Allen;Bull. Seismol. Soc. Am.,1982

4. Big data seismology;Arrowsmith;Rev. Geophys.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3