Can Higher-Order Finite-Difference Operators Be Applied across a Material Interface?

Author:

Valovcan Jaroslav1ORCID,Moczo Peter1ORCID,Kristek Jozef1ORCID,Galis Martin1ORCID,Kristekova Miriam2ORCID

Affiliation:

1. 1Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia

2. 2Earth Science Institute, Slovak Academy of Sciences, Bratislava, Slovakia

Abstract

ABSTRACT It is well known that higher-order and thus longer-stencil finite-difference operators (FDOs) can be advantageously used for evaluating spatial derivatives in the finite-difference schemes applied to smoothly heterogeneous media. This is because they reduce spatial grid dispersion. However, realistic models often include sharp material interfaces. Can high-order long-stencil FDOs be applied across such material interface? We address this question by comparing exact spatial derivatives against derivatives approximated by FDOs with respect to the interface representation, velocity contrast, and order of the FDO. The interface is considered in an arbitrary position with respect to the spatial grid. The material interface exactly represented by the Heaviside step function causes a large error of the FDO spatial derivative near the interface. The maximum error near the interface practically does not depend on the order of the FDO. There are only small differences in errors among FDOs of different orders elsewhere. The larger the velocity contrast, the larger the error. If the material interface is represented using a wavenumber band-limited Heaviside function, the error is smoothed and several times smaller. The error in the wavenumber band-limited model decreases with an increasing order of the FDO. Our findings combined with those by Moczo et al. (2022) lead to the important conclusion: The wavenumber band-limited representation of the material interface is not only a necessary consequence of discretization of the original physical model but also significantly reduces the error in evaluating a spatial derivative using the FDO.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Accurate Numerical Simulation of Seismic Waves in a Heterogeneous Medium Can Be?;Bulletin of the Seismological Society of America;2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3