Direct Dynamic Triggering Scenarios of the Southern San Andreas Fault by Moderate-Magnitude Cross-Fault Earthquakes in the Brawley Seismic Zone, California

Author:

Kyriakopoulos Christodoulos1ORCID,Oglesby David D.2ORCID

Affiliation:

1. 1Center for Earthquake Research and Information, University of Memphis, Memphis, Tennessee, U.S.A.

2. 2Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, California, U.S.A.

Abstract

Abstract Intersections between small faults and larger faults are ubiquitous throughout the world, including the strike-slip San Andreas system in southern California. In particular, orthogonal intersections may exist in the Brawley seismic zone (BSZ) in the Salton Sea region between small left-lateral strike-slip faults and the main southern San Andreas fault (SSAF). This area often experiences earthquake swarms, which poses the question of whether moderate earthquakes on these left-lateral cross faults (CFs) may propagate to the nearby SSAF, triggering a large, damaging event. To address this question, we present a collection of dynamic rupture scenarios describing the interaction of a representative CF intersecting the highly prestressed SSAF in the BSZ. Our models span a variety of CF earthquake rupture scenarios that vary in magnitude (Mw∼5.2–6.1), rupture depth, location, and directivity to test their potential to trigger the SSAF. We use our models to investigate how the above parameters play an interconnected role in developing ruptures that might trigger the SSAF. Our results highlight that adjacency to the SSAF and shallow rupture enhance the ability of moderate-size CF earthquakes to propagate onto the SSAF. We also show that earthquakes starting at the opposite edge of the CF from the intersection are less likely to trigger the SSAF unless they propagate over at least half of the CF length. Our experiments provide for the first time a benchmark of comparison and insights into rupture parameters that might control the initiation of a significant SSAF event from a smaller CF earthquake. They may also give insight into the general interactions of small faults with larger intersecting faults, such as in the case of the recent 2023 Kahramanmaraş, Türkiye, earthquake.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3