A Compact Program for 3D Passive Seismic Source-Location Imaging

Author:

Chen Yangkang1,Saad Omar M.23,Bai Min4,Liu Xingye5ORCID,Fomel Sergey1ORCID

Affiliation:

1. Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, U.S.A.

2. ENSN Lab, Seismology Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Egypt

3. School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, China

4. Key Laboratory of Exploration Technology for Oil and Gas Resources of Ministry of Education, Yangtze University, Caidian, Wuhan, China

5. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi, China

Abstract

Abstract Microseismic source-location imaging is important for inferring the dynamic status of reservoirs during hydraulic fracturing. The accuracy and resolution of the located microseismic sources are closely related to the imaging technique. We present an open-source program for high-fidelity and high-resolution 3D microseismic source-location imaging. The presented code is compact in the sense that all required subroutines are included in one single C program, based on which seismic wavefields can be propagated either forward during a synthetic test or backward during a real time-reversal imaging process. The compact C program is accompanied by a Python script known as the SConstruct file in the Madagascar open-source platform to compile and run the C program. The velocity model and recorded microseismic data can be input using the Python script. This compact program is useful for educational purposes and for future algorithm development. We introduce the basics of the imaging method used in the presented package and present one representative synthetic example and a field data example. The results show that the presented program can be reliably used to locate source locations using a passive seismic dataset.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3