Efficient Velvet-Noise Convolution in Multicore Processors

Author:

Belloch Jose Antonio,Badia Jose M.,Leon German,Välimäki Vesa

Abstract

Velvet noise, a sparse pseudo-random signal, finds valuable applications in audio engineering, such as artificial reverberation, decorrelation filtering, and sound synthesis. These applications rely on convolution operations whose computational requirements depend on the length, sparsity, and bit resolution of the velvet-noise sequence used as filter coefficients. Given the inherent sparsity of velvet noise and its occasional restriction to a few distinct values, significant computational savings can be achieved by designing convolution algorithms that exploit these unique properties. This paper shows that an algorithm called the transposed double-vector filter is the most efficient way of convolving velvet noise with an audio signal. This method optimizes access patterns to take advantage of the processor’s fast caches. The sequential sparse algorithm is shown to be always faster than the dense one, and the speedup is linearly dependent on sparsity. The paper also explores the potential for further speedup on multicore platforms through parallelism and evaluate the impact of data encoding, including 16-bit and 32-bit integers and 32-bit floating-point representations. The results show that using the fastest implementation of a long velvet-noise filter, it is possible to process more than 40 channels of audio in real time using the quad-core processor of a modern system-on-chip.

Publisher

Audio Engineering Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3