Simulated Space Radiation Exposure Effects on Switch Task Performance in Rats

Author:

Stephenson Samuel,Britten Richard

Abstract

BACKGROUND: Astronauts on the mission to Mars will be subjected to galactic cosmic radiation (GCR) exposures. While ground-based studies suggest that simulated GCR (GCRsim) exposure impairs performance in multiple cognitive tasks, the impact of such exposures on task switching performance (an important skill for all aviators) has not yet been determined.METHODS: Male Wistar rats previously exposed to 10 cGy of 4He ions or GCRsim and their sham littermates were trained to perform a touchscreen-based switch task designed to mimic warning light response tests used to evaluate pilots’ response times.RESULTS: Irradiated rats failed to complete a high cognitive task load training task threefold more frequently than shams. There were 18 (4 Sham, 7 He-, and 7 GCR-exposed) rats that successfully completed initial training and underwent switch task testing. Relative to the sham rats in the switch task, the GCRsim-exposed rats had significantly slower response times in switch but not repeat trials. The GCRsim-exposed rats had significantly (P < 0.01) higher switch response ratios (switch/repeat trial response time) and absolute switch costs (switch minus repeat trial response time) than either the sham or He-exposed rats.DISCUSSION: Rats exposed to GCRsim have significantly impaired performance in the switch task manifested as an absolute switch cost of ∼700 ms. The operational significance of such an increase requires further investigation, but a 1000-ms switch cost results in a twofold increase in cockpit error rates in pilots. If exposure to GCR in space results in similar effects in humans, the operational performance of astronauts on the Mars mission may be suboptimal.Stephenson S, Britten R. Simulated space radiation exposure effects on switch task performance in rats. Aerosp Med Hum Perform. 2022; 93(9):673–680.

Publisher

Aerospace Medical Association

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3