Abstract
Background: The Korean Pop (K-Pop) phenomenon has become an important part of popular culture worldwide, with Blackpink being one of the most influential groups. Analyzing sentiment toward Blackpink is urgent, given its growing popularity and wide influence among fans worldwide. In the present technological era, social media platforms such as YouTube have evolved into a space where artists and their fans may interact with each other. As a consequence, social media has become a powerful tool for assessing the emotional tone and sentiment conveyed by individuals. Objective: This research aims to explore the trend of public sentiment towards Blackpink and evaluate how well the IndoBERT model analyzes the sentiment of Indonesian texts. Methods: The objective of this study is to examine the pattern of public sentiment towards Blackpink and assess the proficiency of the IndoBERT model in analyzing the sentiment of Indonesian writings. Results: The findings demonstrated that the IndoBERT model had an exceptional level of precision, achieving a 98% accuracy rate. In addition, it obtained a f1, recall, and accuracy score of 95%. The remarkable results demonstrate the efficacy of the IndosBERT technique in evaluating the emotion of Indonesian-language literature towards Blackpink. Conclusion: This study enhances the knowledge of how fans and audiences react to K-pop material and establishes a foundation for future research and advancement. The impressive precision of the IndoBERT model showcases its capacity for sentiment analysis in Indonesian literature, making it a useful tool for future research endeavors.
Publisher
Universitas Nusantara PGRI Kediri
Reference39 articles.
1. C. Liu, “The Research on the Influence of KPOP (Korean Popular Music) Culture on Fans,” Communications in Humanities Research, vol. 4, no. 1, pp. 63–68, May 2023, doi: 10.54254/2753-7064/4/20220177.
2. S. M. Justine Miguel and J. Xavier Chavez, “The Korean Wave: A Quantitative Study On K-Pop’s Aesthetic Presence in The Philippines Multimedia Industry,” 2023.
3. M. Novo-Lourés, R. Pavón, R. Laza, D. Ruano-Ordas, and J. R. Méndez, “Using Natural Language Preprocessing Architecture (NLPA) for Big Data Text Sources,” Sci Program, vol. 2020, no. 1, p. 2390941, Jan. 2020, doi: 10.1155/2020/2390941.
4. A. Gasparetto, M. Marcuzzo, A. Zangari, and A. Albarelli, “A Survey on Text Classification Algorithms: From Text to Predictions,” Information 2022, Vol. 13, Page 83, vol. 13, no. 2, p. 83, Feb. 2022, doi: 10.3390/INFO13020083.
5. S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, “Deep Learning--based Text Classification,” ACM Computing Surveys (CSUR), vol. 54, no. 3, Apr. 2021, doi: 10.1145/3439726.