Pengembangan Material Maju Superkonduktor Mg-B dengan Penambahan Graphene Oxide melalui Proses Powder in Sealed Tube

Author:

Mahendra Brillian Ardy,Herbirowo Satrio,Saefuloh Iman,Handayani Murni

Abstract

MgB2 is a high possible superconducting material that can be applied quite practically with the functionalization of Mg-B materials. Material development is carried out by adding carbon, namely Graphene Oxide (GO), which is a single atom layered material. The Powder in Sealed Tube (PIST) method is practically used to reduce oxidation. This study aims to analyze the effect of GO material doped with the PIST method made from MgB2 with a sintering temperature of 800℃ for 2 hours on its superconductivity, compound formation, and microstructure. The manufacturing process is carried out in a 1:2 ratio where 98% purity Mg is mixed with Boron, which is then added with 0, 0.3 and 3% wt GO doping, all ingredients are mixed stoichiometrically. The material that has been put in a tube and compacted sufficiently into SS316L which has been closed on one side to enter the powder, is then compacted with high pressure up to 1000 MPa. The material is sintered at a temperature of 800℃ for 2 hours which is then carried out by cooling in the furnace and taking bulk samples. The XRD results showed the formation of the dominant MgB2 phase and the formation of an impurity phase in the form of MgO and obtained a decent crystal size of 295 which was owned by the 3%wt GO PIST MgB2 sample. The SEM test shows the forms of formation (agglomeration) in each sample, with the presence of several axes. Cryogenic testing shows that with doping there is a movement of critical temperature to a lower direction where MgB2 0%wt GO has a TcOnset value of 39.4 K and a TcZero of 38.7 K, while MgB2 3%wt GO has a TcOnset value of 39.6 K and TcZero of 38 K.

Publisher

Universitas Nusantara PGRI Kediri

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3