Comparison of K-Means Algorithm and DBSCAN on Aftershock Activity in the Flores Sea: Seismic Activity 2019-2022

Author:

Aprianti Anyela,Jufriansah AdiORCID,Donuata Pujianti Bejahida,Khusnani AzmiORCID,Ayuba John

Abstract

This study seeks to determine whether the clustering method can be used to analyze Flores Sea earthquake activity. In this investigation, the BMKG Repo serves as the source for real earthquake vibration data collection. The stages of this research include preparing the data in CSV format and then preparing the data to eliminate useless data by identifying missing data. On the basis of the research data, it was determined that the K-Means and DBSCAN methods are used to determine the clustering method for analyzing earthquake activity. In addition, the data is depicted using a graphical Elbow method so that we can determine the number of clusters of aftershocks in the Flores Sea. The results of the visualization of aftershocks that followed earthquakes in the Flores Sea between 2019 and 2022 revealed three distinct groups of earthquake source depths: 33 to 70 kilometers, 150 to 300 kilometers, and 500 to 800 kilometers. In terms of the shilhoute index parameter, the K-Means algorithm is preferable to the DBSCAN algorithm when clustering results are used to analyze earthquake activity.

Publisher

The Indonesian Institute of Science and Technology Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3