Effect of changes in forest water balance and inferred root reinforcement on landslide occurrence and sediment generation following Pinus radiata harvest on Tertiary terrain, eastern North Island, New Zealand

Author:

Marden Michael,Rowan Donna,Watson Alex

Abstract

Background: The frequent occurrence of storm-initiated landslides following harvesting of Pinus radiata D.Don in steep, Tertiary terrain, East Coast region, North Island, New Zealand, is of increasing concern. This paper documents the influence of tree removal and of replacement plantings on the canopy water balance and soil moisture regime when slopes are at their most vulnerable to landslide occurrence. Methods: At a previously established study site, rainfall, throughfall, and soil moisture data were collected before a mature stand of P. radiata was harvested. After harvesting, part of the study site was replanted with P. radiata at 1000 stems ha-1 and part with 500 stems ha-1. Relationships between hydrological changes and landslide occurrence are discussed in relation to planting density, site factors, root system development, silvicultural regimes, and alternative land use options for mitigating erosion in highly erodible hill country. Results: Following harvesting, soil moisture levels remained higher for longer than under a mature forest until rainfall interception and evapotranspiration returned to pre-harvest levels. This coincided with canopy closure, irrespective of planting density. After thinning, interception and evapotranspiration decreased, then regained the equivalent of a closed canopy 2 years later. Landslide occurrence was highest on slopes >25° and with a NE aspect. Sediment generation rates were highest in 2─4-year-old plantings, then decreased markedly with increasing tree age. Conclusions: Irrespective of planting density, P. radiata had little influence on the soil-water regime until canopy interception, evapotranspiration rates, soil-drying and recharge cycles returned to pre-harvest levels, coinciding with canopy closure. During this period, pore-water pressures at times of heavy or prolonged rainfall likely result in soil saturation and an increase in landslides. The progressive loss of root strength of the harvested trees had a secondary influence. The duration of the post-harvest period of heightened slope vulnerability to landslide initiation is a function of the combined influences of site factors on rates of tree growth and survival, and of the planting density regime on the canopy water balance and soil water content until the development of an effective live soil-root reinforcement system. For areas identified as high risk, the targeting of high-value timber species with longer rotation length, including consideration of coppicing species, would minimise the risk of slope failure at harvest. Very high-risk areas unsuited to rotational harvesting will ultimately require transitioning to a permanent indigenous forest cover.

Publisher

Scion

Subject

General Medicine

Reference123 articles.

1. Amishev, D., Basher, L., Phillips, C., Hill, S., Marden, M., Bloomberg, M., & Moore, J. (2013). New forest management approaches to steep hills. [MPI Technical Paper No. 2014/39], 109 p. Wellington, New Zealand: Ministry for Primary Industries.

2. Baillie, B. (1999). Management of logging slash in streams - results of a survey [LIRO Project Report PR85]. Rotorua, New Zealand.

3. Basher, L., Harrison, D., Phillips, C., Marden, M. (2015). What do we need for a risk management approach to steepland plantation forests in erodible terrain. New Zealand Journal of Forestry, 60(2), 7-10.

4. Sediment yield responses to forest harvesting and large storm events, Motueka River, New Zealand;Basher;New Zealand Journal of Marine and Freshwater Research 45,2011

5. Beets, P.N., & Oliver, G.R. (2007). Water use by managed stands of Pinus radiata, indigenous podocarps/hardwood forest, and improved pasture in the central North Island of New Zealand. New Zealand Journal of Forestry Science, 37(2), 306-323.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3