Fenofibrate increases the expression of high mobility group AT-hook 2 (HMGA2) gene and induces adipocyte differentiation of orbital fibroblasts from Graves' ophthalmopathy

Author:

Pasquali D,Pierantoni GM,Fusco A,Staibano S,Colantuoni V,De Bellis A,Bellastella A,Sinisi AA

Abstract

Expansion of adipose tissue in the orbits is a key feature of Graves' ophthalmopathy. Recent evidence shows that orbital fibroblasts are committed to differentiate into adipocytes under appropriate stimuli. Rosiglitazone, an agonist of the nuclear hormone receptor, peroxisome proliferator-activated receptor gamma (PPARgamma) is able to induce both differentiation of orbital fibroblasts into mature adipocytes and expression of the TSH receptor (TSHr) gene. Several studies have suggested an important role of the high mobility group AT-hook 2 (HMGA2) gene in adipocytic cell growth and development. To investigate further the association between adipogenesis-related genes and orbital fibroblasts, we treated fibroblasts from Graves' ophthalmopathy (FGOs) and from normal orbital tissues with fenofibrate, a specific agonist for PPARalpha. We then evaluated the expression of the PPARalpha, PPARgamma2, HMGA2, leptin and TSHr genes before and after 24 h of fenofibrate treatment, using semiquantitative and real-time PCR. For up to 96 h after exposure to fenofibrate, FGOs differentiated into adipocytes. PPARalpha and PPARgamma2 were expressed more in FGOs than in normal cultures, whereas TSHr mRNA was detected only in FGOs. Expression of HMGA2 mRNA and protein was significantly increased in FGOs from 6 to 24 h after fenofibrate, confirming its role in the early phase of adipocyte differentiation. Treatment with fenofibrate for 24 h significantly increased the expression of leptin and TSHr genes. Moreover, TSH treatment significantly increased the accumulation of cAMP, demonstrating that FGOs express functional TSHr. The high level of expression of PPARalpha other than PPARgamma2 transcripts and the stimulating effect of fenofibrate on adipogenesis and on HMGA2, leptin and TSHr genes also indicate that the PPARalpha pathway plays an important part in the adipocyte differentiation of FGOs. These findings suggest that novel drugs to antagonize PPARalpha, other than the PPARgamma signalling system, may also need to be considered in the treatment or prevention of Graves' ophthalmopathy.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3