Adrenergic regulation of catecholamine secretion from trout (Oncorhynchus mykiss) chromaffin cells

Author:

Montpetit CJ,Perry SF

Abstract

The interaction between extracellular catecholamines and catecholamine secretion from chromaffin cells was assessed in rainbow trout (Oncorhynchus mykiss) using an in situ saline-perfused posterior cardinal vein preparation. This was accomplished by comparing the effects of adrenergic receptor agonists and antagonists on stimulus-evoked secretion. An acute bolus injection or extended perfusion with saline containing high levels of either noradrenaline or adrenaline did not affect the baseline secretion of catecholamines. However, catecholamine secretion in response to a bolus injection of the general cholinergic receptor agonist carbachol or electrical stimulation of the nerves innervating the chromaffin cells was abolished or reduced respectively, in preparations perfused with saline containing either catecholamine. To characterize the catecholaminergic inhibition of catecholamine release, secretion in response to carbachol and electrical stimulation was compared in preparations perfused with the adrenergic receptor agonists dobutamine (beta(1)), salbutamol (beta(2)), phenylephrine (alpha(1)) or clonidine (alpha(2)). Prior treatment with dobutamine or phenylephrine was without effect on baseline catecholamine secretion or stimulus-evoked secretion. In contrast, pre-treatment with salbutamol significantly inhibited catecholamine secretion in response to carbachol or electrical stimulation. Pre-treatment with clonidine did not affect carbachol-evoked secretion but did reduce catecholamine secretion during electrical stimulation. The significance of this adrenergic mechanism of regulating stimulus-evoked catecholamine secretion was further established using the adrenergic receptor antagonists nadolol (beta) or phentolamine (alpha). Catecholamine secretion in response to cholinergic stimulation was significantly enhanced in preparations perfused with saline containing nadolol. Furthermore, pre-treatment with phentolamine significantly enhanced adrenaline secretion in response to neuronal stimulation. These results suggest that the mechanisms of adrenergic inhibition of catecholamine secretion from trout chromaffin cells include activation of chromaffin cell membrane beta(2)-receptors and presynaptic alpha(2)-adrenergic receptors.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3