Glucocorticoid and mineralocorticoid resistance/hypersensitivity syndromes

Author:

Kino T,Chrousos GP

Abstract

Glucocorticoids and mineralocorticoids regulate diverse functions important to maintain central nervous system, cardiovascular, metabolic, and immune homeostasis. The actions of these hormones are mediated by their specific intracellular receptors: the glucocorticoid (GR) and mineralocorticoid (MR) receptors. Pathologic conditions associated with changes of tissue sensitivity to these hormones have been described. The syndrome of familial glucocorticoid resistance is characterized by hypercortisolism without Cushing's syndrome stigmata. The molecular defects of four kindreds and one sporadic case have been elucidated as inactivating mutations in the ligand-binding domain of GR. Two cases developed glucocorticoid resistance at the heterozygous state. In these patients, mutant receptors possessed transdominant negative activity upon the wild type receptor. Insensitivity to mineralocorticoids (which may also be caused by loss of function mutations of the MR gene) was found in one sporadic case and four autosomal dominant cases of Pseudohypoaldosteronism type 1. These included two frameshift mutations and a premature termination codon in exon 2, leading to gene products lacking the entire DNA- and ligand-binding domains, and a single base-pair deletion in the intron-5 splice donor site. Tissue hypersensitivity to glucocorticoids was recently hypothesized in patients with Human Immunodeficiency Virus (HIV) type-1 infection via the accessory proteins Vpr and Tat which enhance GR transactivation. Since HIV-1 long terminal repeat (LTR) and glucocorticoid-responsive promoters use the same set of coactivators, these proteins may stimulate HIV-1-LTR and glucocorticoid-inducible genes concurrently. The former may directly stimulate viral proliferation, while the latter may indirectly enhance viral propagation by suppressing the host immune system through glucocorticoid-mediated mechanisms.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3