Octreotide prevents growth factor-induced proliferation of bovine retinal endothelial cells under hypoxia

Author:

Baldysiak-Figiel A,Lang GK,Kampmeier J,Lang GE

Abstract

Ocular diseases such as proliferative diabetic retinopathy are the major cause of blindness in industrialized countries. The main pathologic features of these diseases are hypoxia and overproduction of growth factors resulting in pathologic proliferation of endothelial cells and new vessel formation. Particularly, hypoxia and growth factors, such as VEGF, IGF-1, bFGF and TGF beta(2), show a complex interaction in the onset and progression of the diseases. Therefore, to date, most therapeutic strategies for proliferative retinopathies have targeted proliferation of endothelial cells evoked by growth factors. Recently, a synthetic analog of somatostatin, octreotide, has been shown to inhibit the proliferation of various cells in vitro, including endothelial cells. In this study, we have investigated the proliferative response of bovine retinal endothelial cells (BREC) to growth factors under hypoxic conditions and the modulation by octreotide. We found a dose-dependent increase of cell proliferation with VEGF, IGF-1 and bFGF, and inhibition of hypoxia-induced cell proliferation with TGF beta(2). Moreover, growth factor-induced, but not hypoxia-induced, cell proliferation was attenuated in the presence of octreotide. In contrast, TGF beta(2) abolished hypoxia-induced BREC proliferation. Similar to octreotide BIM23027, a somatastatin receptor subtype 2 (SSTR2) receptor agonist was able to attenuate the growth factor-induced proliferation of BREC expressing mRNA and protein for SSTR2. Therefore, we postulate that octreotide exerts its effects mainly through binding to the SSTR2. Taken together, our findings point to octreotide as a promising candidate for the treatment of eye disorders involving growth factor-dependent proliferation of endothelial cells.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3