LUTEAL MAINTENANCE IN THE HYPOPHYSECTOMIZED PSEUDOPREGNANT RABBIT: EFFECT OF OVINE LUTEINIZING HORMONE AND FOLLICLE-STIMULATING HORMONE

Author:

DAVIES J.,HOFFMAN L. H.,DAVENPORT G. R.

Abstract

SUMMARY Ovine luteinizing hormone (LH) (300 μg/day in divided subcutaneous doses) had a luteotrophic effect of limited duration in intact and hypophysectomized 10-day pseudopregnant rabbits (6–10 days in intact animals; 3–6 days in hypophysectomized animals). Higher dose levels caused reovulation in which case luteolysis occurred. Suppression of reovulation with anti-ovine follicle-stimulating hormone (FSH) serum permitted the daily dose of LH to be raised to 750 μg without causing luteolysis or reovulation. Anti-LH serum was luteolytic in the intact animals. A combination of ovine FSH (200 μg) and LH (300 μg) was indistinguishable from LH alone in terms of its luteotrophic effect in hypophysectomized 10-day pseudopregnant rabbits. Ovine FSH at large daily dose levels (1000 μg) was more effectively luteotrophic than LH alone in a significant number of animals for 10 days after hypophysectomy: endometrial changes in these animals resembled those only seen in normal pregnancy. The luteotrophic effect of 1000 μg FSH was believed to be dependent on a small but significant content of LH, estimated to be about 10 μg. Ovine FSH and anti-FSH serum in intact pseudopregnant rabbits had no detectable effect on luteal function. Animals hypophysectomized at the 7th day and treated with 300 or 500 μg LH/day showed no luteal maintenance for 6 days nor was reovulation induced. Sensitivity to the luteotrophic effect of LH was deemed, therefore, to be greater at 10 than at 7 days of pseudopregnancy. Endometrial criteria were found to be reliable indicators of luteal function. The appearance of ciliated cells was correlated with the decline of the corpora lutea. When reovulation occurred, a new progestational cycle was rapidly superimposed on the existing one.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3