Chronic local inflammation in mice results in decreased TRH and type 3 deiodinase mRNA expression in the hypothalamic paraventricular nucleus independently of diminished food intake

Author:

Boelen A,Kwakkel J,Wiersinga W M,Fliers E

Abstract

During illness, changes in thyroid hormone metabolism occur, known as nonthyroidal illness and characterised by decreased serum triiodothyronine (T3) and thyroxine (T4) without an increase in TSH. A mouse model of chronic illness is local inflammation, induced by a turpentine injection in each hind limb. Although serum T3 and T4 are markedly decreased in this model, it is unknown whether turpentine administration affects the central part of the hypothalamus–pituitary–thyroid axis (HPT-axis). We therefore studied thyroid hormone metabolism in hypothalamus and pituitary of mice during chronic inflammation induced by turpentine injection. Using pair-fed controls, we could differentiate between the effects of chronic inflammation per se and the effects of restricted food intake as a result of illness. Chronic inflammation increased interleukin (IL)-1β mRNA expression in the hypothalamus more rapidly than in the pituitary. This hypothalamic cytokine response was associated with a rapid increase in local D2 mRNA expression. By contrast, no changes were present in pituitary D2 expression. TSHβ mRNA expression was altered compared with controls. Comparing chronic inflamed mice with pair-fed controls, both preproTSH releasing hormone (TRH) and D3 mRNA expression in the paraventricular nucleus were significantly lower 48 h after turpentine administration. The timecourse of TSHβ mRNA expression was completely different in inflamed mice compared with pair-fed mice. Turpentine administration resulted in significantly decreased TSHβ mRNA expression only after 24 h while later in time it was lower in pair-fed controls. In conclusion, central thyroid hormone metabolism is altered during chronic inflammation and this cannot solely be attributed to diminished food intake.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3