Dual activity of human pituitary thyrotrophin isoforms on thyroid cell growth

Author:

Medri G,Sergi I,Papandréou M-J,Beck-Peccoz P,Verrier B,Ronin C

Abstract

ABSTRACT Alkaline (pI 8·6–7·5) and neutral (pI 7·0–6·0) isoforms of human TSH have been isolated from a highly purified intrapituitary preparation by isoelectric focusing and compared for their respective actions on thyroid cell proliferation. Both TSH isoforms displayed the same ability to bind to porcine thyroid membranes as the original hormone preparation, indicating a similar recognition at the receptor sites. Alkaline forms showed a higher potency in inducing either cyclic AMP (cAMP) production or [3H]thymidine incorporation in FRTL-5 cells (half-maximal effective doses (ED50 values)=0·25 and 0·29 nm respectively) compared with their neutral counterparts (ED50 values=0·66 and 0·70 nm respectively). Increasing the concentration of alkaline forms in the presence of a half-maximal concentration of neutral TSH resulted in a profound inhibition of cell growth without a significant change in cAMP. Conversely, increasing the amount of neutral forms in the presence of a half-maximal dose of alkaline TSH resulted in an additive response for cAMP production but not in cell proliferation. To assess whether glycosylation might be responsible for the variation in hormone action, both alkaline and neutral TSH isoforms were tested for recognition of their carbohydrate chains by concanavalin A (Con A) and ricin. No major difference was found in binding to Con A, indicating that the contribution of carbohydrates to changes in hormone pI was not related to core branching. Very few galactose residues were accessible in either hormone fraction since little binding to ricin was observed. Isoelectric focusing of TSH forms before and after neuraminidase treatment revealed that neutral forms had a higher sialic acid content than alkaline TSH. In conclusion, the current findings show that TSH isoforms differentially affect cAMP production and cell growth. TSH fractions with a high sialic acid content and a low mitogenic activity behave as antagonists to the more active forms for cell proliferation. It is suggested that physiological control of TSH action at the thyroid gland may reside in the respective amounts of various TSH forms which, once bound to their receptor, can induce variable activation of post-receptor events while controlling cell proliferation.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3