Has the mammary gland a protective mechanism against overexposure to triiodothyronine during the peripartum period? The prolactin pulse down-regulates mammary type I deiodinase responsiveness to norepinephrine

Author:

Anguiano B,Rojas-Huidobro R,Delgado G,Aceves C

Abstract

Peripartum is a crucial period for mammary gland final differentiation and the onset of lactation. Although the ‘trigger’ for lactogenesis depends on several hormones, a key factor is the peripartum prolactin (PRL) pulse whose deletion results in a failure to initiate milk production. Other hormones having a critical role during this period but exerting a contrary effect are the thyronines. A transitory hypothyroidism occurs at peripartum in serum and several other extrathyroidal tissues, whereas the induction of hyperthyroidism during late pregnancy is associated with the absence of lactation after delivery. We analyzed the mammary gland during pregnancy and lactation for: (a) the type and amount of thyroid receptors (TRs), (b) the local triiodothyronine (T3) generation catalyzed by type I deiodinase (Dio1), (c) the Dio1 response to norepinephrine (NE) and (d) the effect on Dio1 and TRs of blocking the PRL pulse at peripartum. Our data showed that during pregnancy the mammary gland contains Dio1 in low amounts associated with the highest expression of TRα1; whereas during lactation the gland shows high levels of both Dio1 and TRα1. However, at peripartum, both TRs and Dio1 decrease, and Dio1 becomes refractory to NE. This refractoriness disappears when the PRL pulse is blocked by the dopamine agonist bromocriptine. This blockade is also accompanied by a significant decrease in cyclin D1 expression. Our data suggested that the peripartum PRL pulse is part of a protective mechanism against precocious differentiation and/or premature involution of the alveolar epithelium due to T3 overexposure.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3