Anatomically realistic aortic dissection simulator as a potential training tool for point-of-care ultrasound

Author:

,Rahmah MutiahORCID,Al-Ashwal Rania HussienORCID, ,Salim Maheza Irna MohamadORCID, ,Lam Yan TungORCID, ,Hau Yuan WenORCID,

Abstract

Aim: Simulators for aortic dissection diagnosis are limited by complex anatomy influencing the accuracy of point-of-care ultrasound for diagnosing aortic dissection. Therefore, this study aimed to create a healthy ascending aorta and class DeBakey, type II aortic dissection simulator as a potential point-of-care ultrasound training model. Material and methods: 3D mould simulators were created based on computed tomography images of one healthy and one DeBakey type II aortic dissection patient. In the next step, two polyvinyl alcohol-based and two silicone-based simulators were synthesised. Results: The results of the scanning electron microscope assessment showed an aortic dissection simulator’s surface with disorganised surface texture and higher root mean square (RMS or Rq) value than the healthy model of polyvinyl alcohol (RqAD = 20.28 > RqAAo = 10.26) and silicone (RqAD = 33.8 > RqAAo = 23.07). The ultrasound assessment of diameter aortic dissection showed higher than the healthy ascending aorta in polyvinyl alcohol (dAD = 28.2 mm > dAAo = 20.2 mm) and Si (dAD = 31.0 mm > dAAo = 22.4 mm), while the wall thickness of aortic dissection showed thinner than the healthy aorta in polyvinyl alcohol, which is comparable with the actual aorta measurement. The intimal flap of aortic dissection was able to replicate and showed a false lumen in the ultrasound images. The flap was measured quantitatively, indicating that the intimal flap was hyperechoic. Conclusions: The simulators were able to replicate the surface morphology and echogenicity of the intimal flap, which is a linear hyperechoic area representing the separation of the aorta wall.

Publisher

Medical Communications Sp. z.o.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3