Anomaly Detection with Gradient Boosting Regressor on HVAC Systems

Author:

ADAK Muhammed Fatih1ORCID,KİBAR Refik2ORCID,OVAZ Kevser3ORCID

Affiliation:

1. SAKARYA ÜNİVERSİTESİ

2. SAKARYA UNIVERSITY

3. Rochester Institute of Technology of Dubai

Abstract

HVAC systems are important in buildings due to their significant energy consumption, impact on indoor air quality, and role in occupant comfort. Optimizing the operation and control of these systems is crucial for improving energy efficiency and reducing costs. Anomaly detection in HVAC systems aims to optimize energy consumption, improve thermal comfort and indoor air quality, detect and isolate sensor faults, and, more importantly, detect cyber-attacks. By analyzing system data for unusual patterns or unauthorized access attempts, anomaly detection can play a vital role in safeguarding HVAC systems against cyber threats. Detecting and isolating potential cyber-attacks can prevent disruptions in building operations, protect sensitive data, and ensure the continued functionality of HVAC systems securely and reliably. In this study, Gradient Boosting Regressor is used to improve the anomaly detection capabilities of HVAC systems. Traditional anomaly detection methods often struggle to adapt to the dynamic nature of HVAC systems and may generate false alarms or miss critical issues. To address these challenges, we propose the application of Gradient Boosting Regressor, a powerful machine learning technique, to enhance anomaly detection accuracy and reliability. We evaluate the model's performance using real-world HVAC data, comparing it with existing anomaly detection methods. The results demonstrate significant improvements in the system's ability to identify anomalies accurately while minimizing false alarms. This research advances HVAC system security by providing a more robust and adaptive anomaly detection solution. Integrating Gradient Boosting Regressor into the cybersecurity framework of HVAC systems offers improved protection against cyber threats, thereby enhancing the resilience and reliability of critical infrastructures.

Funder

Sakarya University Scientific Research Projects Commission

Publisher

Politeknik Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3