Selüloz ve PLA Biyopolimer Nonwoven Malçların Toprak Sağlığına Etkisi

Author:

MARASOVİĆ Paula1ORCID,KOPITAR Dragana1ORCID,BRUNŠEK Ružica1ORCID,SCHWARZ Ivana1ORCID

Affiliation:

1. University of Zagreb, Faculty of Textile Technology

Abstract

The nonwoven mulches produced from regenerated viscose and PLA fibres as well as conventional agro foil were placed on the soil by randomly arranged blocks of four replication plots. After 50 days, the soil samples beneath each mulch and on the control field were collected, where the bacteria and fungi population as well as the physio-chemical properties of the soil were measured. The severe reduction in bacterial population in soil under the agro foil and mulches made of PLA fibres occurs due to the prevalence of high soil temperature. The bacterial population of soil beneath the mulches made of viscose fibre significantly increased due to favourable anaerobic conditions, respectively soil temperature and moisture. Under all mulches, compared to the control field, a higher fungal population was observed. The fungal population under the nonwoven mulch produced by viscose fibres was 161% higher in comparison to the control field. The available nutrient contents of soils under the nonwoven mulches were higher compared to the control field. The control field showed higher available nutrient contents of soil than the field covered by conventional agro foil. The results of the study reveal that usage of nonwoven mulches made of viscose fibres is most appropriate for short-term mulching application since successfully increases microbial population and improves the physio-chemical properties of soil.

Funder

European Union from the European Structural and Investment Funds, the Operational programme Competitiveness and Cohesion, the European Regional Development Fund

Publisher

Politeknik Dergisi

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3