Statistical Assessment of Counterflow Ranque-Hilsch Vortex Tube Performance

Author:

Yılmaz Işıkhan Selen1ORCID,Korkmaz Murat2ORCID,Kırmacı Volkan3ORCID

Affiliation:

1. HACETTEPE ÜNİVERSİTESİ, SOSYAL BİLİMLER MESLEK YÜKSEKOKULU, MUHASEBE VE VERGİ BÖLÜMÜ, MUHASEBE VE VERGİ UYGULAMALARI PR.

2. HACETTEPE ÜNİVERSİTESİ

3. BARTIN ÜNİVERSİTESİ, MÜHENDİSLİK, MİMARLIK VE TASARIM FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ, MAKİNE MÜHENDİSLİĞİ PR.

Abstract

The vortex tube, which consists of a simple tube, is a device that can simultaneously heat and cool thanks to environmentally friendly pressurized fluids (air, oxygen, nitrogen, etc.). Many studies have been included in the literature to evaluate the Ranque-Hilsch Vortex tube's performance and to reveal influential factors. Variance analysis, linear regression analysis, and the Taguchi method are primarily used in practice. This study aimed to compare the strengths and weaknesses of the factorial experimental design and Taguchi orthogonal array design in the statistical evaluation of the factors affecting the heat exchange of the Ranque-Hilsch Vortex tube. For this purpose, a detailed theory was created for the appropriate factorial ANOVA model to the data set (4 × 5 × 12 = 240 experiments) containing the Ranque-Hilsch Vortex tube and effective material type (polyamide, steel, brass, and aluminum), nozzle number (2,3,4,5 and 6), and input pressure parameters (1,5-7 bar). Following the factorial ANOVA solution, including all binary interactions, the findings were obtained according to the most suitable L16 Taguchi Orthogonal array, considering the four levels for each material, nozzle, and pressure. As a result of the ANOVA, all parameters were statistically significant on heat change (p < 0.001). On the other hand, the pressure was obtained as the only statistically significant factor according to the Taguchi analysis (F = 35.17, p = 0.008). The advantages and disadvantages of the two methods were compared regarding the test findings and graphical performances.

Publisher

Duzce Universitesi Bilim ve Teknoloji Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3