Surface Analysis of Magnesium AZ31 Samples Immersed in Various Aqueous Solutions

Author:

SAHİN Erdem1ORCID,ALP Meltem1ORCID,ŞEREF Ahmed2ORCID

Affiliation:

1. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ

2. MUGLA SITKI KOCMAN UNIVERSITY

Abstract

Rapid degradation in body fluids is known to be the main shortcoming of the AZ31 magnesium alloy that is aimed to be controlled in this study by chemical conversion of its surface in various phosphate and chloride solutions. Deposited layers on the surface of bare alloy plates were subjected to compositional and morphological analyses to assess their performance as barriers to degradation. Also changes in the mass of the samples and pH of the solutions were monitored during 21 day immersion periods. Formations of prismatic, platelike, needlelike crystals of various compositions including calcium phosphates, magnesium phosphates, magnesium chlorides were observed by scanning electron microscopy and their atomic compositions were determined by EDX and quantitative XRD analyses. The results indicate that a layer of ceramic of various thicknesses can stably form on the base alloy by simple adsorption of the particles suspended in the solution or by nucleation and growth of the products of reactions between dissolved ions and the metal ions released from the surface. These deposition layers that are solely induced by the electrochemical potential of the species in the solution offer facile surface modification methods and novel phases to control the degradation of magnesium alloys in aggressive environments such as body fluids or marine environments.

Funder

Çalışmamız M-era.net ISIDE projesi kapsamında Tübitak tarafından desteklenmiştir

Publisher

Duzce Universitesi Bilim ve Teknoloji Dergisi

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3