Abstract
Purpose: This study explored the association of the elasticity modulus and shear wave velocity (SWV) of the tibialis anterior muscle, as measured by two-dimensional shear wave elastography (2D-SWE), with the intracompartmental pressure (ICP) determined using the Whitesides method in a New Zealand rabbit model of acute compartment syndrome (ACS). Additionally, it evaluated the viability of 2D-SWE as a noninvasive, quantitative tool for the early detection of ACS.Methods: An ACS model was established through direct external compression by applying pressure bandaging to the lower legs of 15 New Zealand rabbits using neonatal blood pressure cuffs. Another five animals represented a non-modeled control group. To measure the elasticity modulus and SWV of the tibialis anterior muscles, 2D-SWE was employed. Blood oxygen saturation, serum creatine kinase (CK), and myoglobin levels were monitored. Subsequently, the anterior tibial compartment was dissected, and the tibialis anterior was removed for hematoxylin and eosin staining to assess muscle injury.Results: The elasticity modulus and SWV of the tibialis anterior muscle increased with compression duration, as did serum CK and myoglobin levels. ICP was strongly positively correlated with these parameters, particularly mean velocity (r=0.942, P<0.001) and CK (r=0.942, P<0.001). Blood oxygen saturation was negatively correlated with ICP (r=-0.887, P<0.001). Histological analysis indicated progressive muscle cell swelling over time, with damage transitioning from reversible to irreversible and culminating in necrosis.Conclusion: In a rabbit ACS model, ICP was strongly positively correlated with muscle elasticity modulus/SWV. Consequently, 2D-SWE may represent a novel tool for assessing early-phase ACS.
Funder
First Affiliated Hospital of Air Force Medical University in China
Publisher
Korean Society of Ultrasound in Medicine