Acclimatization of Tropical Palm Species Associated with Leaf Morpho-Physiological Traits to the Understorey Environment of Hevea Rubber Farms

Author:

Ni Zaw Zar,Musigapong Piyanut,Chiarawipa Rawee,Pechkeo Surachart,Chantanaorrapint Amonrat

Abstract

Hevea rubber farm is viable for agroforestry systems since its canopy lessens extreme weather conditions and contributes to the adaptation of shade-tolerant plants. However, some limitations in the availability of soil water and shades vary with the age of rubber trees and affect the understorey plants’ acclimatization. Tropical palms are potentially associated plants for the rubber-based agroforestry systems because they are rainforest species adaptable to understorey environments. Two rubber farms, ages 12 and 25 years, intercropped with tropical palms were selected to investigate the acclimatization of the palms to the seasonal abiotic variations in the mature rubber farms. The studied palm species were Chrysalidocarpus lutescens and Rhapis excelsa in the 12-year-old rubber farm and Livistona speciosa and Licuala spinosa in the 25-year-old rubber farm, respectively. Leaf area, stomatal conductance, photosynthesis pigments, and leaf nitrogen content were identified as the palms’ morpho-physiological traits. The 12-year-old rubber farm had a marked soil water deficit in all soil depths at the beginning of the rainy season, reaching around 200 kPa at the 80 cm soil depth, while the 25-year-old rubber farm received greater light transmissions, ranging between 37 and 46% in the late dry season. All palms adjusted leaf area to balance the photosynthetic capacity. The Rhapis palm had greater acclimatization with significant responses of stomatal conductance. Other than the Licuala palm, all palms exhibited the allocation of chlorophyll pigments and nitrogen content significantly in their leaves in response to the different intensities of abiotic stresses in the understorey of the rubber farms.

Publisher

Universiti Putra Malaysia

Subject

Plant Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3