Blood CO Status Classification Using UV-VIS Spectroscopy and PSO-optimized 1D-CNN Model

Author:

Huong Audrey,Gaik Tay Kim,Beng Gan Kok,Ngu Xavier

Abstract

Rapid and effective blood carbon monoxide (CO) assessment is of great importance, especially in estimating CO-related morbidity and instituting effective preventive measures. The conventional detection methods using CO breath analysis lack sensitivity, while collecting biological fluid samples for CO level measurement is prone to external contamination and expensive for frequent use. This study proposes a one-dimensional convolutional neural network (1D-CNN) consisting of three stacked biconvolutional layers for binary classification of blood CO status using the diffuse reflectance spectroscopy technique. Iterative particle swarm optimization (PSO) has efficiently found the best network parameters to learn important features from the reflectance spectroscopy data. The findings showed good testing accuracy, specificity, and precision of 92.9%, 90%, and 89.7%, respectively, and a high sensitivity of 96.3% in determining abnormal blood CO among smokers using the proposed CNN network. Comparisons with eight existing machine learning and deep learning models revealed the proposed method’s effectiveness in classifying blood CO status while reducing computing time by 8–13 folds. The findings of this work provide new insights that are valuable for researchers in neural network design automation, healthcare management, and skin-related research, specifically for application in nondestructive evaluation and clinical decision-making.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3