Development of a Fluidized Bed Dryer for Drying of a Sago Bagasse

Author:

Othman Nur Tantiyani Ali,Harry Ivan Adler

Abstract

Sago is an essential source of starch for some regions in the third and developing world. However, the sago processing industry has been producing a large amount of sago waste, and the untreated waste is usually disposed to the nearest river. It not only leads to the environmental problem, but it is illegal under the Environmental Quality Act 1974. Since the sago waste still has high starch content, which is 58%, it can be converted to high value-added products such as poultry feed. However, before being converted to other products, the sago must be dried to remove the moisture content to prevent any bacteria growth and ensure safety health issues have been observed. Recently, drying of sago bagasse using a fluidized bed dryer (FBD) has gained attention since the dry rate of the material is considerably faster compared to other methods. Due to that reason, the drying of the sago bagasse in the FBD is studied using computational fluid dynamic as it can be executed in a short period of time compared to the experimental approach. The FBD model was developed using ANSYS© Fluent academic version 19.2. The effect of the hot air feed temperature; T=50, 60, 70, and 80°C and velocity of hot air feed; v=1-4 m/s on the sago’s behavior and performance of fluidization profile were studied. The simulation results showed that the high temperature and air feed velocity would result in a rapid drying rate. Besides, the optimum drying rate was at T=60°C with the v=4 m/s as these conditions give a shorter drying time to achieve of final 10% moisture content. It also has the added advantages of reducing the power energy and cost supply. These optimal conditions are very crucial and should be consider as the dried sago bagasse tend to be retrograded when a higher temperature is applied.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3