Examination of the Partial Discharge Behaviour Within a Spherical Cavity in Insulation Paper of Transformer

Author:

Roslan Muhammad Hakirin,Azis Norhafiz,Ab Kadir Mohd Zainal Abidin,Jasni Jasronita,Mohd Yousof Mohd Fairouz

Abstract

This paper investigates the behaviour of partial discharge (PD) in transformer insulation paper based on the Finite Element Method (FEM). The three-dimensional (3D) FEM model consists of conductor and insulation paper, representing part of a transformer’s high voltage winding. The conductor’s width, height, and length used in this study were 2.4 mm, 11.5 mm, and 16 mm. An insulation paper thickness of 1 mm was modelled around the conductor. An internal cavity with a diameter of 0.5 mm cavity was introduced within the insulation paper. This study introduced two locations of the spherical cavities at the centre and left corner of the insulation paper: Location 1 (L1) and Location 2 (L2). An AC voltage of 33 kV, 50 Hz, was applied to the conductor while the bottom of the insulation paper was grounded. The model was used to study the electric field distribution within the insulation paper and its effect on PD current and charge magnitude. The influence of cavity location on the charge magnitude was also examined. It is found that the electric field distribution is influenced by the conductor configuration as well as the location of the cavity. The electric field in the cavity is the highest at L1 compared to L2. The first PD occurs faster for the cavity with a high electric field. Due to the PD occurrence at the same inception field, the real PD current and charge magnitude is similar at different locations. The apparent PD current and charge magnitude induced at the ground electrode is slightly higher at L1 than at L2.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3