Shared autonomous cargo bike fleets '“ approaches for a novel sustainable urban mobility solution

Author:

Schmidt Stephan, ,Junge Lars,Höfer Markus,Manoeva, Devina,Meissner Sören,Riestock Maik,Sass Stefan,Schmidt Michael,Assmann Tom,Matthies Ellen, ,

Abstract

The societal mission of mitigating air pollution and greenhouse gas emissions are forcing urban agglomerations worldwide strongly greening their urban transportation systems. The global megatrend of urbanization aggravates those challenges by steadily increasing the demand for urban movements of people and goods. Recent research concludes that the autonomous cars propagated in this context carry the risk of significant rebound effects and therefor make the overall societal benefit appear at least doubtful [Fraedrich et al. 2017; Hörl et al. 2019]. Shared autonomous fleets of electrically powered micro-vehicles, on the other hand, have the potential to reduce emissions through their electric powertrains, to avoid traffic jams by substituting of passenger cars, to achieve a high degree of comfort and flexibility compared to the classic car through automated provision and at the same time strengthen public transport as integrated last mile service. At the same time, micro-vehicles, for example in the form of cargo bikes, can be tailored very variably to a specific usage scenario to exploiting further efficiency gains. The authors propose a use case in which an electrified three-wheeled cargo bike, flexibly called to any location at any time, is provided in an automated manner and can be transferred to manual operation after being handed over to the user. After use, the vehicle is released and returns to the depot or is ready for the next request. The separation into automated provision and manual mobility service simplifies the safety concepts and functional safety of the system and thus, from the authors' point of view, increases the realization potential compared to the privat autonomous vehicles (PAV) or shared autonomous vehicles (SAV). The technical implications of this scenario are very similar to those of the autonomous car, but in some cases address significantly different focus, as the article will show. This paper describes the approaches developed during the prototypical realization of the usage scenario and presents proposals for solutions. For this purpose, first relevant requirements are defined, the existing vehicle and sensor concept are described in detail, and solutions for environment perception, prediction, localization, trajectory planning, and interaction design as well as for the confection of the overall logistics system are presented and evaluated in a simulative or experimental manner.

Publisher

FISITA

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Driven Approach for Defining Demand Scenarios for Shared Autonomous Cargo Bike Fleets;Applied Sciences;2023-12-25

2. Autonomous Cargo Bike Fleets – Approaches for AI-Based Trajectory Forecasts of Road Users;Transport and Telecommunication Journal;2023-02-01

3. Data-Driven Approach for Defining Demand Scenarios for Shared Autonomous Cargo-Bike Fleets;Smart Energy for Smart Transport;2023

4. Manual and Autonomous Vehicles Mixture using DL-based Traffic Safety Solution in 5G-Transportation;2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE);2022-12-16

5. On Optimizing Driving Patterns of Autonomous Cargo Bikes as a Function of Distance and Speed—A Psychological Study;IEEE Open Journal of Intelligent Transportation Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3