Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.

Author:

Janmey P A1,Euteneuer U1,Traub P1,Schliwa M1

Affiliation:

1. Hematology Unit, Massachusetts General Hospital, Boston.

Abstract

The cytoplasm of vertebrate cells contains three distinct filamentous biopolymers, the microtubules, microfilaments, and intermediate filaments. The basic structural elements of these three filaments are linear polymers of the proteins tubulin, actin, and vimentin or another related intermediate filament protein, respectively. The viscoelastic properties of cytoplasmic filaments are likely to be relevant to their biologic function, because their extreme length and rodlike structure dominate the rheologic behavior of cytoplasm, and changes in their structure may cause gel-sol transitions observed when cells are activated or begin to move. This paper describes parallel measurements of the viscoelasticity of tubulin, actin, and vimentin polymers. The rheologic differences among the three types of cytoplasmic polymers suggest possible specialized roles for the different classes of filaments in vivo. Actin forms networks of highest rigidity that fluidize at high strains, consistent with a role in cell motility in which stable protrusions can deform rapidly in response to controlled filament rupture. Vimentin networks, which have not previously been studied by rheologic methods, exhibit some unusual viscoelastic properties not shared by actin or tubulin. They are less rigid (have lower shear moduli) at low strain but harden at high strains and resist breakage, suggesting they maintain cell integrity. The differences between F-actin and vimentin are optimal for the formation of a composite material with a range of properties that cannot be achieved by either polymer alone. Microtubules are unlikely to contribute significantly to interphase cell rheology alone, but may help stabilize the other networks.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 593 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3