Deep learning techniques and mathematical modeling allow 3D analysis of mitotic spindle dynamics

Author:

Dang David12ORCID,Efstathiou Christoforos1ORCID,Sun Dijue1ORCID,Yue Haoran1ORCID,Sastry Nishanth R.2ORCID,Draviam Viji M.1ORCID

Affiliation:

1. School of Biological and Behavioural Sciences, Queen Mary University of London 1 , London, UK

2. Department of Informatics, King’s College London 2 , London, UK

Abstract

Time-lapse microscopy movies have transformed the study of subcellular dynamics. However, manual analysis of movies can introduce bias and variability, obscuring important insights. While automation can overcome such limitations, spatial and temporal discontinuities in time-lapse movies render methods such as 3D object segmentation and tracking difficult. Here, we present SpinX, a framework for reconstructing gaps between successive image frames by combining deep learning and mathematical object modeling. By incorporating expert feedback through selective annotations, SpinX identifies subcellular structures, despite confounding neighbor-cell information, non-uniform illumination, and variable fluorophore marker intensities. The automation and continuity introduced here allows the precise 3D tracking and analysis of spindle movements with respect to the cell cortex for the first time. We demonstrate the utility of SpinX using distinct spindle markers, cell lines, microscopes, and drug treatments. In summary, SpinX provides an exciting opportunity to study spindle dynamics in a sophisticated way, creating a framework for step changes in studies using time-lapse microscopy.

Funder

Biotechnology and Biological Sciences Research Council

LIDo-DTP studentship

LIDo-iCASE studentship

Publisher

Rockefeller University Press

Subject

Cell Biology

Reference77 articles.

1. Mask r-cnn for object detection and instance segmentation on keras and tensorflow;Abdulla,2017

2. A survey on data-efficient algorithms in big data era;Adadi;J. Big Data,2021

3. Exploring the function of cell shape and size during mitosis;Cadart;Dev. Cell,2014

4. Experimental and computational framework for a dynamic protein atlas of human cell division;Cai;Nature,2018

5. Data-analysis strategies for image-based cell profiling;Caicedo;Nat. Methods,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3