Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils.

Author:

Zhang H1,Hu W1,Ramirez F1

Affiliation:

1. Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York 10029, USA.

Abstract

Extracellular microfibrils, alone or in association with elastin, confer critical biomechanical properties on a variety of connective tissues. Little is known about the composition of the microfibrils or the factors responsible for their spatial organization into tissue-specific macroaggregates. Recent work has revealed the existence of two structurally related microfibrillar components, termed fibrillin-1 and fibrillin-2. The functional relationships between these glycoproteins and between them and other components of the microfibrils and elastic fibers are obscure. As a first step toward elucidating these important points, we compared the expression pattern of the fibrillin genes during mammalian embryogenesis. The results revealed that the two genes are differentially expressed, in terms of both developmental stages and tissue distribution. In the majority of cases, fibrillin-2 transcripts appear earlier and accumulate for a shorter period of time than fibrillin-1 transcripts. Synthesis of fibrillin-1 correlates with late morphogenesis and the appearance of well-defined organ structures; fibrillin-2 synthesis, on the other hand, coincides with early morphogenesis and, in particular, with the beginning of elastogenesis. The findings lend indirect support to our original hypothesis stating that fibrillins contribute to the compositional and functional heterogeneity of the microfibrils. The available evidence is also consistent with the notion that the fibrillins might have distinct, but related roles in microfibril physiology. Accordingly, we propose that fibrillin-1 provides mostly force-bearing structural support, whereas fibrillin-2 predominantly regulates the early process of elastic fiber assembly.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 279 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3