Membrane proteins of the vacuolar system. III. Further studies on the composition and recycling of endocytic vacuole membrane in cultured macrophages

Author:

Muller WA,Steinman RM,Cohn ZA

Abstract

In previous publications (Muller, W.A., R.M. Steinman, Z.A. Cohn. 1980, J.Cell Biol. 86:292-314), we found that the membrane of macrophage phagolysosomes could be selectively radioiodinated in living cells, The technique required phagocytosis of lactoperoxidase covalently coupled to latex spheres (LPO-latex), followed by iodination on ice with Na(125)I and hydrogen peroxide. In this paper, we use the LPO-latex system to further analyze the composition and recycling of phagocytic vacuole membrane. Three approaches were employed to examine the polypeptide composition of the phagolysosome (PL) and plasma membranes (PM). (a) The efficiency of intracellular iodination was increased by increasing lysosomal pH with chloroquine. By one-dimensional SDS PAGE, the heavily labeled chloroquine-treated PL exhibited the same labeled polypeptides as PM iodinated extracellularly with LPO-latex. (b) Iodinated PL and PM were compared by two-dimensional gel electrophoresis. No differences in the isoelectric point and molecular weight of the major iodinated species were detected. (c) Quantitative immune precipitation was performed with five specific antibodies directed against cell surface antigens. Four antibodies precipitated similar relative amounts of labeled antigen on the cell surface and endocytic vacuole. One antibody, secreted by hybridoma 2.6, detected a 21-kdalton polypeptide that was enriched sevenfold in PL membrane. This enrichment was cell surface-derived, since the amount of labeled 2.6 was increased sevenfold when iodinated PM was driven into the cell during latex uptake. Therefore, intracellular iodination primarily detects PL proteins that are identical to their PM counterparts. Additional studies employed electron microscope autoradiography to monitor the centrifugal flow of radiolabeled polypeptides from PL to PM. Cells were iodinated intralysosomally and returned to culture for only 5-10 min at 37 degrees C. Most of the cell-associated label then redistributed to the cell surface or its adjacent area. Significant movement out of the lysosome compartment occurred even at 2 degrees C and 22 degrees C. Extensive and rapid membrane flow through the secondary lysosome presumably contributes to the great similarity between PM and PL membrane polypeptides.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3