ELECTRON MICROSCOPIC AND HISTOCHEMICAL OBSERVATIONS OF MUSCLE DEGENERATION AFTER TOURNIQUET

Author:

Moore Dan H.1,Ruska Helmut1,Copenhaver Wilfred M.1

Affiliation:

1. (From the Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, and the Division of Laboratories and Research, New York State Department of Health, Albany)

Abstract

As an experimental model for the different forms of muscle degeneration, injury caused by 2 hours' ischemia has been studied from 20 minutes to 16 hours after release of the tourniquet. Discoid degeneration developed in stretched fibers by dissolution of the I bands (Z substances and actin). The discs represented the Q bands (A-H-A). In fibers which passively maintained contraction lengths during degeneration, the Z substances were dissolved, but the continuity of the fibrils was preserved, since the filaments are continuous over all sarcomeres under these conditions. Mitochondria and the tubules of the endoplasmic reticulum swelled, ruptured, and disintegrated. Granular degeneration developed in fibers where mitochondria were abundant. Unstretched degenerating fibers with few mitochondria gave a homogeneous or hyaline appearance. The different forms of degeneration therefore were dependent on the status of stretch and the fiber type. The extent of degeneration was not a function of time after ischemia, there being both nearly normal and severely damaged fibers at 20 minutes and 16 hours after the release of tourniquets. When degeneration occurred, however, the basic alterations were the same in all fibers; there was mitochondrial and reticular swelling, dissolution of the Z substances, and finally disintegration of the contractile material. Some damage developed in the sarcolemmas and capillaries. The mitochondrial disintegration was not linked with inactivation of the succinic dehydrogenase system.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3