Vesicle accumulation and exocytosis at sites of plasma membrane disruption.

Author:

Miyake K1,McNeil P L1

Affiliation:

1. Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912-2000, USA.

Abstract

Plasma membrane disruptions are resealed by an active molecular mechanism thought to be composed, in part, of kinesin, CaM kinase, snap-25, and synaptobrevin. We have used HRP to mark the cytoplasmic site of a mechanically induced plasma membrane disruption. Transmission electron microscopy revealed that vesicles of a variety of sizes rapidly (s) accumulate in large numbers within the cytoplasm surrounding the disruption site and that microvilli-like surface projections overlie this region. Scanning electron microscopy confirmed that tufts of microvilli rapidly appear on wounded cells. Three assays, employing the membrane specific dye FM1-43, provide quantitative evidence that disruption induces Ca(2+)-dependent exocytosis involving one or more of the endosomal/lysosomal compartments. Confocal microscopy revealed the presence in wounded cells of cortical domains that were strikingly depleted of FM dye fluorescence, suggesting that a local bolus of exocytosis is induced by wounding rather than global exocytosis. Finally, flow cytometry recorded a disruption-induced increase in cell forward scatter, suggesting that cell size increases after injury. These results provide the first direct support for the hypothesis that one or more internal membrane compartments accumulate at the disruption site and fuse there with the plasma membrane, resulting in the local addition of membrane to the surface of the mechanically wounded cell.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3