GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes.

Author:

Melikyan G B1,White J M1,Cohen F S1

Affiliation:

1. Department of Molecular Biophysics and Physiology, Rush Medical College, Chicago, Illinois 60612, USA.

Abstract

Under fusogenic conditions, fluorescent dye redistributed from the outer monolayer leaflet of red blood cells (RBCs) to cells expressing glycophosphatidylinositol-anchored influenza virus hemagglutinin (GPI-HA) without transfer of aqueous dye. This suggests that hemifusion, but not full fusion, occurred (Kemble, G. W., T. Danieli, and J. M. White. 1994. Cell. 76:383-391). We extended the evidence for hemifusion by labeling the inner monolayer leaflets of RBCs with FM4-64 and observing that these inner leaflets did not become continuous with GPI-HA-expressing cells. The region of hemifusion-separated aqueous contents, the hemifusion diaphragm, appeared to be extended and was long-lived. But when RBCs hemifused to GPI-HA-expressing cells were osmotically swollen, some diaphragms were disrupted, and spread of both inner leaflet and aqueous dyes was observed. This was characteristic of full fusion: inner leaflet and aqueous probes spread to cells expressing wild-type HA (wt-HA). By simultaneous video fluorescence microscopy and time-resolved electrical admittance measurements, we rigorously demonstrated that GPI-HA-expressing cells hemifuse to planar bilayer membranes: lipid continuity was established without formation of fusion pores. The hemifusion area became large. In contrast, for cells expressing wt-HA, before lipid dye spread, fusion pores were always observed, establishing that full fusion occurred. We present an elastic coupling model in which the ectodomain of wt-HA induces hemifusion and the transmembrane domain, absent in the GPI-HA-expressing cells, mediates full fusion.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3