Activated R-Ras, Rac1, Pi 3-Kinase and Pkcε Can Each Restore Cell Spreading Inhibited by Isolated Integrin β1 Cytoplasmic Domains

Author:

Berrier Allison L.1,Mastrangelo Anthony M.1,Downward Julian2,Ginsberg Mark3,LaFlamme Susan E.1

Affiliation:

1. Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208

2. Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom

3. Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037

Abstract

Attachment of many cell types to extracellular matrix proteins triggers cell spreading, a process that strengthens cell adhesion and is a prerequisite for many adhesion-dependent processes including cell migration, survival, and proliferation. Cell spreading requires integrins with intact β cytoplasmic domains, presumably to connect integrins with the actin cytoskeleton and to activate signaling pathways that promote cell spreading. Several signaling proteins are known to regulate cell spreading, including R-Ras, PI 3-kinase, PKCε and Rac1; however, it is not known whether they do so through a mechanism involving integrin β cytoplasmic domains. To study the mechanisms whereby cell spreading is regulated by integrin β cytoplasmic domains, we inhibited cell spreading on collagen I or fibrinogen by expressing tac-β1, a dominant-negative inhibitor of integrin function, and examined whether cell spreading could be restored by the coexpression of either V38R-Ras, p110α-CAAX, myr-PKCε, or L61Rac1. Each of these activated signaling proteins was able to restore cell spreading as assayed by an increase in the area of cells expressing tac-β1. R-Ras and Rac1 rescued cell spreading in a GTP-dependent manner, whereas PKCε required an intact kinase domain. Importantly, each of these signaling proteins required intact β cytoplasmic domains on the integrins mediating adhesion in order to restore cell spreading. In addition, the rescue of cell spreading by V38R-Ras was inhibited by LY294002, suggesting that PI 3-kinase activity is required for V38R-Ras to restore cell spreading. In contrast, L61Rac1 and myr-PKCε each increased cell spreading independent of PI 3-kinase activity. Additionally, the dominant-negative mutant of Rac1, N17Rac1, abrogated cell spreading and inhibited the ability of p110α-CAAX and myr-PKCε to increase cell spreading. These studies suggest that R-Ras, PI 3-kinase, Rac1 and PKCε require the function of integrin β cytoplasmic domains to regulate cell spreading and that Rac1 is downstream of PI 3-kinase and PKCε in a pathway involving integrin β cytoplasmic domain function in cell spreading.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3