Affiliation:
1. Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York 12208
2. Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
3. Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
Abstract
Attachment of many cell types to extracellular matrix proteins triggers cell spreading, a process that strengthens cell adhesion and is a prerequisite for many adhesion-dependent processes including cell migration, survival, and proliferation. Cell spreading requires integrins with intact β cytoplasmic domains, presumably to connect integrins with the actin cytoskeleton and to activate signaling pathways that promote cell spreading. Several signaling proteins are known to regulate cell spreading, including R-Ras, PI 3-kinase, PKCε and Rac1; however, it is not known whether they do so through a mechanism involving integrin β cytoplasmic domains. To study the mechanisms whereby cell spreading is regulated by integrin β cytoplasmic domains, we inhibited cell spreading on collagen I or fibrinogen by expressing tac-β1, a dominant-negative inhibitor of integrin function, and examined whether cell spreading could be restored by the coexpression of either V38R-Ras, p110α-CAAX, myr-PKCε, or L61Rac1. Each of these activated signaling proteins was able to restore cell spreading as assayed by an increase in the area of cells expressing tac-β1. R-Ras and Rac1 rescued cell spreading in a GTP-dependent manner, whereas PKCε required an intact kinase domain. Importantly, each of these signaling proteins required intact β cytoplasmic domains on the integrins mediating adhesion in order to restore cell spreading. In addition, the rescue of cell spreading by V38R-Ras was inhibited by LY294002, suggesting that PI 3-kinase activity is required for V38R-Ras to restore cell spreading. In contrast, L61Rac1 and myr-PKCε each increased cell spreading independent of PI 3-kinase activity. Additionally, the dominant-negative mutant of Rac1, N17Rac1, abrogated cell spreading and inhibited the ability of p110α-CAAX and myr-PKCε to increase cell spreading. These studies suggest that R-Ras, PI 3-kinase, Rac1 and PKCε require the function of integrin β cytoplasmic domains to regulate cell spreading and that Rac1 is downstream of PI 3-kinase and PKCε in a pathway involving integrin β cytoplasmic domain function in cell spreading.
Publisher
Rockefeller University Press
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献