COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system.

Author:

Misteli T1,Warren G1

Affiliation:

1. Cell Biology Laboratory, Imperial Cancer Research Fund, London, United Kingdom.

Abstract

Rat liver Golgi stacks fragmented when incubated with mitotic but not interphase cytosol in a process dependent on time, temperature, energy (added in the form of ATP) and cdc2 kinase. The cross-sectional length of Golgi stacks fell in the presence of mitotic cytosol by approximately 50% over 30 min without a corresponding decrease in the number of cisternae in the stack. The loss of membrane from stacked and single cisternae occurred with a half-time of approximately 20 min, and was matched by the appearance of both small (50-100 nm in diameter) and large (100-200 nm in diameter) vesicular profiles. Small vesicular profiles constituted more than 50% of the total membrane after 60 min of incubation and they were shown to be vesicles or very short tubules by serial sectioning. In the presence of GTP gamma S all of the small vesicles were COP-coated and both the extent and the rate at which they formed were sufficient to account for the production of small vesicles during mitotic incubation. The involvement of the COP-mediated budding mechanism was confirmed by immunodepletion of one of the subunits of COP coats (the coatomer) from mitotic cytosol. Vesicles were no longer formed but highly fenestrated networks appeared, an effect reversed by the readdition of purified coatomer. Together these experiments provide strong support for our hypothesis that the observed vesiculation of the Golgi apparatus during mitosis in animal cells is caused by continued budding of COP-coated transport vesicles but an inhibition of their fusion with their target membranes.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HPV is a cargo for the COPI sorting complex during virus entry;Science Advances;2023-01-20

2. Quantitative Proteomics Analysis of Purified Rat Liver Golgi;Methods in Molecular Biology;2022-12-14

3. Studying Golgi Structure and Function by Thin Section TEM;Methods in Molecular Biology;2022-12-14

4. Membrane Curvature, Trans-Membrane Area Asymmetry, Budding, Fission and Organelle Geometry;International Journal of Molecular Sciences;2020-10-14

5. DjA1 maintains Golgi integrity via interaction with GRASP65;Molecular Biology of the Cell;2019-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3