ELECTRON MICROSCOPY OF OSTEOCLASTS IN HEALING FRACTURES OF RAT BONE

Author:

Gonzales Federico1,Karnovsky Morris J.1

Affiliation:

1. From the Departments of Anatomy, University of Texas Dental Branch and Baylor University College of Medicine, Houston, Texas, and the Department of Pathology, Harvard Medical School, Boston

Abstract

Osmium-fixed, undecalcified, callus tissue from healing fractures of rat tibias was sectioned with a diamond knife for study with the electron microscope. Large multinucleated cells were found adjacent to bone. A characteristic labyrinthine infolded border was consistently seen in parts of the cells close to the bone surface. The innermost parts of this "ruffled border" gave rise to vacuoles. The bone surface was always disrupted under the "ruffled border" of the cells. Needle-like crystals were seen at the osseous fringe, within folds in the ruffled border as well as within vacuoles deeper in the cells. Collagen fibers denuded of crystals were never observed. Mitochondria, containing clusters of fine granules, were abundant. The part of the cell away from bone contained rough endoplasmic reticulum and the cell membrane was thrown into irregular microvilli. These observations are discussed in relation to current concepts of osteoclastic resorption of bone.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3