Concurrent collapse of keratin filaments, aggregation of organelles, and inhibition of protein synthesis during the heat shock response in mammary epithelial cells.

Author:

Shyy T T1,Asch B B1,Asch H L1

Affiliation:

1. Department of Experimental Pathology, Roswell Park Memorial Institute, Buffalo, New York 14263.

Abstract

The sequence of heat shock-induced perturbations in protein synthesis and cytoskeletal organization was investigated in primary cultures of mouse mammary epithelial cells (MMEC). Exposure of the cells to 45 degrees C for 15 min caused a marked inhibition of protein synthesis through 2 h after heart. Resumption of protein synthesis began by 4 h, was complete by 8 h, and was accompanied by induction of four major heat shock proteins (HSPs) of 68, 70, 89, and 110 kD. Fluorescent cytochemistry studies indicated that heat shock elicited a reversible change in the organization of keratin filaments (KFs) and actin filaments but had a negligible effect on microtubules. Changes in the organization of KFs progressed gradually with maximal retraction and collapse into the perinuclear zone occurring at 1-2 h after heat followed by restoration to the fully extended state at 8 h. In contrast, actin filaments disappeared immediately after heat treatment and then rapidly returned within 30-60 min to their original appearance. The translocation of many organelles first into and then away from the juxtanuclear area along with the disruption and reformation of polyribosomes were concurrent with the sequential changes in distribution of KFs. The recovery of the arrangement of KFs coincided with but was independent of the resumption of protein synthesis and induction of HSPs. Thermotolerance could be induced in protein synthesis and KFs, but not in actin filaments, by a conditioning heat treatment. Neither protein synthesis nor induction of HSPs was necessary for the acquisition of thermotolerance in the KFs. The results are compatible with the possibility that protein synthesis may depend on the integrity of the KF network in MMEC. Heat shock thus can efficiently disarrange the KF system in a large population of epithelial cells, thereby facilitating studies on the functions of this cytoskeletal component.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3