Localization of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3-L1 adipocytes that contain intracellular glucose transporters.

Author:

Tanner L I1,Lienhard G E1

Affiliation:

1. Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756.

Abstract

Transferrin receptors in detergent extracts of subcellular membrane fractions prepared from 3T3-L1 adipocytes were measured by a binding assay. There was a small but significant increase (1.2-fold) in the amount of receptor in a crude plasma membrane fraction and a 40% decrease in the number of transferrin receptors in microsomal membranes prepared from insulin-treated cells, when compared with corresponding fractions from control cells. Intracellular vesicles containing insulin-responsive glucose transporters (GT) have been isolated by immunoadsorption from the microsomal fraction (Biber, J. W., and G. E. Lienhard. 1986. J. Biol. Chem. 261:16180-16184). All of the transferrin receptors in this fraction were localized in these vesicles; however, because the GT vesicles contain approximately 30-fold fewer transferrin receptors than GT, on the average only one vesicle in three contains a transferrin receptor. The binding of 125I-pentamannose 6-phosphate BSA to 3T3-L1 adipocytes at 4 degrees C was used to monitor surface insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptors. Exposure of cells to insulin at 37 degrees C for 5 min resulted in a 2.5-4.5-fold increase in surface receptors. There was a corresponding 20% decrease in the amount of IGF-II receptors in the microsomal membranes prepared from insulin-treated cells, as assayed by immunoblotting. Moreover, the IGF-II receptors and GT were located in the same intracellular vesicles, since antibodies to the carboxyterminal peptide of either protein immunoadsorbed vesicles containing 70-95% of both proteins initially present in the microsomal fraction. In conjunction with other studies, these results indicate that in 3T3-L1 adipocytes, three membrane proteins (the GT, the transferrin receptor, and the IGF-II receptor) respond similarly to insulin, by redistributing to the surface from intracellular compartment(s) in which they are colocalized.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3