The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system.

Author:

Moser A R1,Dove W F1,Roth K A1,Gordon J I1

Affiliation:

1. McArdle Laboratory, University of Wisconsin, Madison 53706.

Abstract

Min is a fully penetrant dominant mutation that leads to the development of multiple intestinal adenomas throughout the duodenal-to-colonic axis. Min/+ C57BL6/J mice have an average life-span of 120 d. Multi-label immunocytochemical studies of these lesions demonstrate patches of differentiated enterocytes, and scattered enteroendocrine, goblet and Paneth cells. Expression of endogenous marker genes within these differentiated cells can be directly correlated with the position occupied by the adenoma along the duodenal-to-colonic axis and mirrors the regional differentiation of the normal gut epithelium. The presence of multiple lineages in adenomas together with their retention of spatial information suggests that tumorigenesis in Min/+ mice may be initiated in a multipotent stem cell normally located at the base of intestinal crypts. To study the time-dependent properties of these tumors, genetic conditions were sought in which Min/+ animals could survive for up to 300 d. Min is fully penetrant in hybrids with either AKR/J or MA/MyJ. However, the hybrids demonstrate a reduction in the number of intestinal adenomas. Preliminary backcross analysis is consistent with a single major modifier locus unlinked to Min in both the AKR/J and MA/MyJ strains. The increased lifespan of the hybrid animals is also associated with the development of invasive tumors. New tumors do not arise continuously over the lifespan of these animals; instead all adenomas appear to be established by 100 d of age or sooner. These studies indicate that the Min/+ mouse is a powerful model system for analyzing the mechanisms that establish and maintain a balance between proliferation and differentiation in the continuously renewing gut epithelium and for an assessment of the multi-step hypothesis of intestinal neoplasia.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 259 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3