Cell surface modulation of the neural cell adhesion molecule resulting from alternative mRNA splicing in a tissue-specific developmental sequence.

Author:

Murray B A,Owens G C,Prediger E A,Crossin K L,Cunningham B A,Edelman G M

Abstract

The neural cell adhesion molecule N-CAM is an intrinsic membrane glycoprotein that is expressed in the embryonic chicken nervous system as two different polypeptide chains encoded by alternatively spliced transcripts of a single gene. Because they differ by the presence or absence of approximately 250 amino acids in their cytoplasmic domains, these polypeptides are designated ld and sd, for large and small cytoplasmic domain, respectively. We report here that the ld-specific sequences comprise a single exon in the chicken N-CAM gene and that developmental expression of the ld and sd chains occurs in a tissue-specific fashion, with the ld chain restricted to the nervous system. Comparison of the nucleotide sequences from an N-CAM genomic clone with cDNA sequences showed that a single exon of 783 base pairs corresponded to the unique cytoplasmic domain of the ld polypeptide. Sequences from this exon were absent from the single N-CAM mRNA detected in several non-neural tissues by RNA blot hybridization, and immunoblot analysis confirmed that antigenic determinants unique to the ld-specific domain were not expressed in these tissues. Immunohistochemical experiments indicated that only the sd chain was expressed on cell surfaces of non-neural tissues throughout embryonic development. The ld chain was found on cell bodies and neurites of differentiated neurons; it first appeared as neurons began to extend neurites and to express the neuron-glia cell adhesion molecule (Ng-CAM) and it was restricted to definite layers in laminar tissues such as the retina and cerebellum. These results suggest that the control of mRNA splicing may affect the regulation of N-CAM function at specific sites within the nervous system and thus influence the control of neural morphogenesis and histogenesis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3